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Joseph Louis Lagrange
(Giuseppe Luigi Lagrangia)

1736-1813

1766:  Frederick the Great (Berlin) recruited him to 
take the position vacated by Euler, as the court 
mathematician

1787: Louis XVI invited him to Paris

Mechanique Analytique:

To unite and present from one point of view the 
different principles in mechanics



Lagrangian point of view:
Reference frame is enclosing the mass.
The coordinates are moving with the

center of the mass.

Eulerian point of view:
Reference frame is fixed in space, 
the mass travels through the control
volume.
The coordinates are fixed in space.



Eulerian 
Representation

Eulerian Variable: ( , , , )x y z tθ θ=



Lagrangian 
Representation

[ ( ), ( ), ]o oX t X t tθ θ=Lagrangian Variable:



Fluid Dynamics is Lagrangian by nature
Eulerian treatments are for convenience

Physics

Lagrangian P.V: Eulerian P.V:
Second Law of Newton

in Fluid Dynamics

F ma=
Body Forces

∑ Surface and Body Forces =

( )D Momemtum
Dt



Physics

Lagrangian Problem: Eulerian Problem:

Spilled Oil Slicks                         Transport Process

Sediment Patches                        Pollutants

Planktons and Larvae                Salt, Temperature

(Biology)                                      Dissolved Solutes

Search and Rescue

Discrete Continuum



Lagrangian Point of View:
Physics is clear
Discrete particle dynamics
Measurement difficulties
Hard to quantify measurements

Eulerian Point of View:
Continuum
Operational Convenience
Easy to organize “information”

Euler-Lagrangian Transformation:

Substantial Derivative D u v w
Dt t x y z
θ θ θ θ θ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

Observations:



Some Common Measurement Techniques:
Lagrangian Reference Frame:

Most flow visualization techniques
Dye studies, drifters
Long-term path of water ‘mass’

Measurement Difficulties, Hard to quantify measurements

Eulerian Reference Frame:

Fixed Current Meter, CTD moorings
Cruising and Profiling ADCP, CTD
HF Radar for surface current and waves

Operational Convenience, Easy to organize “information”

Eulerian Variable: ( , , , )x y z tθ θ=

Lagrangian Variable: [ ( ), ( ), ]o oX t X t tθ θ=



Combined Eulerian-Lagrangian Measurement 
Techniques:    Particle Image Velocimetry (PIV)

Particle Image Velocimetry by M. Raffel, C. Willert, J. 
Kompenhans, Springer, 1998.



Lagrangian Observations Map results to an Eulerian
Reference Frame

PIV has been successfully extended to include multi-
cameras, to three-dimensional flows, turbulence, …., 
etc.

Observation: The technique is mature in laboratory 
applications!

Estimating displacements by cross-correlations



Is there room for applications of 
Particle Image Velocimetry (PIV) in 
geophysical & environmental fluid flows?

Have you noticed that weather forecasts are 
more accurate?

Difference?  Temporal and spatial scales

Some applications in rivers

We have limited success in field applications

Challenge:  Applications of PIV in environmental 
flow studies?



Numerical Methods
Lagrangian Point of View:

Clear Physics
Difficulties to quantify measurements

Eulerian Point of View:
Continuum, Operational Convenience
Easy to organize “information”

Substantial Derivative: Euler-Lagrangian Transformation

D u v w
Dt t x y z
θ θ θ θ θ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

0[ ( )] [ ( )]oD X t t X t
Dt t t
θ θ θ θ θ+ −− + ∆ −
= =

∆ ∆
0[ ( )] [ ( )]oD X t t X t

Dt t t
θ θ θ θ θ+ −− + ∆ −
= =

∆ ∆



Eulerian-Lagrangian Approach: 
CFL Condition Extended

[ ( ), ( ), ]o oX t X t tθ θ− =

[ ( ), ( ), ]o oX t X t t t tθ θ+ = + ∆ + ∆

Eulerian Data

Origin of Numerical Dispersion:

Interpolation of Eulerian Data to 
Lagrangian Point



Summary:
Lagrangian Point of View:

Clear Physics
Discrete Labeled Water Parcel
Measurement Difficulties (Easier numerically)
Hard to quantify measurements!

Eulerian Point of View:
Operational Convenience
Easy to organize “information”
Needed “information” are populated on 
an Eulerian Model Grid points (database)

Consider:
Eulerian-Lagrangian Method (ELM)



Recent Italian Connection
Numerical Modeling

Collaborations with Vincenzo Casulli

Cheng, R.T., and Casulli, V., 1982, On Lagrangian residual 
currents with application in South San Francisco Bay, CA, 
Water Resources Research, v. 18, No. 6, p. 1652-1662.



Recent Italian Connection
Numerical Modeling

Collaborations with Vincenzo Casulli

The TRIM Family of Models
From TRIM to UnTRIM

¾ Solution of Shallow Water Equations
¾ Transient, Multi-Dimensional (3D, 2D, 1D)
¾ Simultaneous Solution of Transport Variables
¾ Semi-implicit Finite-Difference Method
¾ Boundary Fitting Unstructured Grid Mesh



General Viewpoint of Numerical Modeling
of Environmental Flows

Need the Right Model to represent the proper 
physical properties and to resolve the physical 
processes of the environmental problem

Scales: Physical Properties or
Physical Processes

Spatial and Temporal

Scales



Formulating the Algorithm for a 
Numerical Model

From PDE to Discrete Algebraic System:
Spatial discretization: 

Finite difference, Finite Element, Finite Volume
Temporal discretization:

Explicit scheme, Implicit scheme, Semi-implicit

Desirable Properties of a Numerical Model:
1. Stability
2. Accuracy         (Require compromise)
3. Efficiency

Numerical Algorithm



Numerical Foundation of TRIM (Background)
Casulli, V., 1990, Semi-implicit Finite-difference Methods for the Two-
dimensional Shallow Water Equations, J. Comput. Phys., V. 86, p. 56-74.

Stability Analysis: Gravity wave terms and velocities in 
Continuity Eq. control the numerical stability

Method of Solution:

1. Treat those terms implicitly, and the remaining terms 
explicitly.  

2. Substituting momentum Eqs. into continuity Eq., 
resulting a matrix equation that determines the water 
surface of the entire domain.  

Desirable Properties of a Numerical Model:
1. Stability  2. Accuracy  3. Efficiency

(Compromise)



2D Depth-Averaged Shallow Water Equations

Continuity Eq.:

X-Momentum Eq.:

Y-Momentum Eq.:
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Eulerian-Lagrangian Method (ELM) => Stability (von Neumann)



X-Momentum Eq.:

Y-Momentum Eq.:
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Semi-implicit FD: Algebraic  Eq. of

Semi-implicit FD: Algebraic Eq. of  
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Substituting the momemtum Equations into

Continuity Eq.: [( ) ] [( ) ] 0h h
x y
U V

t
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With all coefficients are positive.

The governing matrix equation is symmetric, 
diagonally dominant, and positive definite.  Numerical 
solution is achieved by a preconditioned conjugate 
gradient method.



Some Numerical Properties
• Convective terms- Eulerian-Lagrangian method 
• Gravity wave terms - unconditionally stable
• Discretized equation - properly accounts for positive 

and zero depths 
• Wetting and drying of cells are treated correctly
• TRIM2D successfully implemented to reproduce 

sharp hydrographs of riverine flows and for estuaries
• The model is robust and efficient

TRIM_2D: Extensive applications in San Francisco Bay

Cheng, R. T., V. Casulli, and J. W. Gartner, 1993, Tidal, residual, intertidal
mudflat (TRIM) model and its applications to San Francisco Bay, California, 
Estuarine, Coastal, and Shelf Science, Vol. 36, p. 235-280.



From TRIM Series of Models to UnTRIM

What does TRIM model stand for?
TRIM stands for Tidal, Residual, Inter-tidal Mudflat

TRIM also implies simple and elegant in numerical 
algorithm and model code, a goal that we are striving 
for!



Systematic Development of TRIM Models:

TRIM_3D: Applications in San Francisco Bay and others
Casulli, V. and R. T. Cheng, 1992, Inter. J. for Numer. Methods in Fluids

Casulli, V. and E. Cattani, 1994, Comput. Math. Appl., Stability, accuracy 
and efficiency analysis of TRIM_3D,  θ-method for time-difference

Cheng, R. T. and V. Casulli, 1996, Modeling the Periodic Stratification and 
Gravitational Circulation in San Francisco Bay,  ECM-4.

TRIM_3D: Non-hydrostatic
Casulli, V. and G. S. Stelling, 1996, ECM-4

Casulli, V. and G. S. Stelling, 1998, ASCE, J. of Hydr. Eng

UnTRIM model:

Casulli, V. and P. Zanolli, 1998, A Three-dimensional Semi-implicit 
Algorithm for Environmental Flows on Unstructured Grids, Proc. of Conf. 
On Num. Methods for Fluid Dynamics, University of Oxford.



Extension to Unstructured Grid Model  -- UnTRIM

TRIM Modeling Philosophy:
1. Semi-implicit Finite-Difference Methods
2. Θ-Method for time difference
3. Solutions in Physical Space, regular mesh, no 

coordinate transformations in x-, y-, or z-directions
4. In complicated domain, refine grid resolution if 

necessary
5. Pursue computational efficiency and robustness

UnTRIM (Unstructured Grid TRIM model) follows the 
SAME TRIM modeling philosophy, except the finite-
difference cells are boundary fitting unstructured polygons!



Summary of the UnTRIM Model:
Governing equations (Hydrostatic Assumption)    

t
∂ ς

+
∂

Cj = (Kv     Cj )+  Kh∇2Cj j = 1, 2, 3, ….  
D
Dt

∂
∂ z

∂
∂ z

Continuity and Free-surface Equations

And an equation of State

where ∇×( ) is cross product, ∇•( ) is inner product, ∇2 ( ) is the Laplacian,
and     is the velocity in the horizontal plane.

Transport Equations

Horizontal Momentum Equation in      direction for velocity 

Lagged one time-step
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1. Semi-implicit finite-difference of momentum Eq. 
in the normal direction to each face is applied!

2. Applied the Finite-Volume integration of the 
free surface equation!  
Local and global conservation of volume is guaranteed!

3. The resultant matrix equation determines the 
water surface elevation for the entire field.



1. Semi-implicit finite-difference of momentum Eq. 
in the normal direction to each face is applied!

2. Applied the Finite-Volume integration of the 
free surface equation!  
Local and global conservation of volume is guaranteed!

3. The resultant matrix equation determines the 
water surface elevation for the entire field.

Water Depth



t
∂ ς
∂

+

Summary of Numerical Algorithm

Continuity and Free-surface Equations

The continuity equation and the momentum equations are 
truly coupled in the solution.  No mode splitting is used!
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Finite Volume integration over each polygon => 
V’s are eliminated giving a Matrix Eq. for ζ

Momentum Equation in      direction for velocity relates

and ζ (left) and ζ (right) on each face of a polygon
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Issues of unstructured grids

User must define:

1. Number and locations of nodes
2. Polygon number and its relation

with nodes (connectivity)
3. Each side is numbered, left and right 

polygons are defined (connectivity)
4. Center coordinates of each polygon
5. Vertical layers are of constant thickness 

(variable in z) except the bottom and 
free-surface; a stack of prisms

6.  Water depth and normal velocity are 
defined on the sides

7.   Water elevation is defined at the center 
of the polygon



San Francisco Bay(All Rectangles) (Mixed Polygons)

48506 nodes,  45841 polygons 
94374 sides on the top layer
42 layers, 1,160 K faces, ∆t = 180
(R= simulation/CPU = 17.7) 
on 2.2 GHz PC

12682 nodes, 20126 polygons 
32827 sides on the top layer
42 layers, 295 K faces, ∆t = 180
(R= simulation/CPU = 70) 
on 2.2 GHz PC



A Practical Application

Using Italian Tools (UnTRIM)

☺
Wind-Driven Circulation in 

Upper Klamath Lake, Oregon
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I. Background

II. ADCP Deployment and Results

III. Time-series of Wind Observations

IV. Wind-Driven Circulation

V. Reproducing ADCP Observations

VI. Analyze This and Analyze That

VII. Conclusion (Physics Rules!)



Agency Lake

Upper Klamath Lake

WQ Stations

East ADCP

West ADCP

Met Stations

40 km x 80 kmWater Year 2003



West ADCP Station:

Water depth ~  8 m

Bin size = 0.2 m

Sampling rate = 30.0 min

Total bins = 34

East ADCP Station:

Water depth ~  3.5 m

Bin size = 0.2 m

Sampling rate = 30.0 min

Total bins = 12



Wind Speed and Direction Time-Series

Prevailing Wind Direction 
From ~275 degree N

SE Wind

ADCP Data



Filtered 3D ADCP Time-Series



Current Speed

Current Direction

Wind Direction

Wind Speed

West: Dir ~ 350

East: Dir ~ 150 West: Dir ~ 175

East: Dir ~ 300

SE Wind



Prevailing West Wind SE Wind

Synopsis of Wind-driven Circulation

o350

o150 o175

o300



Unstructured 
Grid Model:
Upper Klamath 
Lake and Agency 
Lake:
nv = 4712
ne = 8550
nk = 22
n3s =  82992

Side length
40 to 250 m
Grids are 
boundary fitting 
Fine resolution 
grids for high 
spatial variability.



Prevailing NW Wind

5.5 m/s

ADCP Observations
10.0 cm/s

Model Velocity
10.0 cm/s

o350

o150



SE Wind

5.5 m/s

ADCP Observations
10.0 cm/s

Model Velocity
10.0 cm/s

o300

o175



Simulations based on the observed wind

Agency 
Lake

Upper Klamath 
Lake

WQ Stations

East ADCP

West ADCP

Met Stations

Issues with wind time-series:
1. Magnetic north
2. Data gaps or irregular time intervals



Agency Lake

Upper Klamath Lake

East ADCP

West ADCP

Met Stations

Williamson R. 
Inflow

Klamath R. Outflow

Rattle 
Snake Pt.

Klamath 
Falls

Rocky Pt

Field Data:
Observed Wind

Deep ADCP (West)

Shallow ADCP 
(East)

Williamson River 
Inflow 

Klamath R. 
Outflow

Water levels at

Rocky Pt

Rattle Snake Pt.

Klamath Falls



11507000 
Klamath Falls
(South)

11505900 
Rattle Snake Pt
(Middle)11505800 

Rocky Pt
(North)

July 1, 2003
August 1, 2003

Sept 1, 2003

Water Level Observations Referenced to 4143 ft above sea-level
cm

-25

-75

-100

-125
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-50



Klamath Falls
(South)

Rattle Snake Pt
(Middle)

2-3 Days SE Wind

Rocky Pt (North)

Possible Seiching
Basic period ~ 1.5 HrJuly 1, 2003

July 31, 2003

Water Level Observations Referenced to 4143 ft above sea-level



Rattle Snake Pt
(Middle)

Klamath Falls
(South)

Rocky Pt (North)

2-3 Days SE Wind

Model Simulated Water Level Variations

July 31, 2003July 1, 2003



Model Results vs. ADCP Observations at Deep (West) Station



Scatter-Plot of Model vs. ADCP, Deep Station
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Wind Speed vs Velocities, Deep Station
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Model Results vs. ADCP Observations at Shallow (East) Station



Scatter-Plot Model velocity vs. ADCP, Shallow
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Correlations with wind speed

Wind Speed

Wind Speed Speed East ADCP

Physics?

Speed East Model



Correlations with wind speed

Wind Speed

Wind Speed Speed East ADCP

Speed East Model

Model vs ADCP
Model is Correct!



Take Home Message:

Field Data Do not Necessarily 
Represent the Truth.

Field Data Must be Consistent with the 
Correct Physics! 

There might be hidden messages in the 
data!



Conclusion
• The UnTRIM numerical model is used to 

reproduce the wind circulation in Upper 
Klamath Lake (UKL).

• Circulation in Upper Klamath Lake is 
shown to be completely controlled by wind.

• The ADCP data at a deep station is 
reproduced reasonably well; at the shallow
station, data are shown to be suspect.

• Discrepancies are due to the inherent 
uncertainty in wind records which are used 
to drive the model



Summary:

Lagrangian VP shows clear 
Physics but difficult to Manage!

Eulerian VP is well suited for 
quantification!



Recommendation:

Think as a Lagrangian!

Act as an Eulerian!

Thank you!
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